
This paper appeared in the Proceedings of the 7th Symposium on Principles
of Distributed Computing, pp. 171-181 (August 1988).

Recovery in Distributed Systems
Using Optimistic Message Logging and Checkpointing

DTICDavid B. JohnsonELE CE lll Willy ,Zwaenepoel
ELECTE
MAY 3 0 1990 Department of Computer Science

Rice Universityo D Houston, Texas

.... Abstract a process is logged on stable storage [5], and each
process is occasionally checkpointed to stable stor-

In a distributed system using message logging and age, but no coordination is required between the
checkpointing to provide fault tolerance, there is checkpoints of different processes. Between received
always a unique maximum recoverable system state, messages, the execution of each process is assumed to

(, regardless of the message logging protocol used. The be deterministic.
L proof of this relies on the observation that the set of The protocols used for message logging are typi-

system states that have occurred during any single cally pessimistic. With these protocols, each message
execution of a system forms a lattice, with the sets is synchronously logged as it is received, either by
of consistent and recoverable system states as sublat- blocking the receiver until the message is logged [1, 6],
tices. The maximum recoverable system state never or by blocking the receiver if it attempts to send a new
decreases, and if all messages are eventually logged, message before this received message is logged [3].
the domino effect cannot occur. This paper presents Recovery based on pessimistic message logging is
a general model for reasoning about recovery in such straightforward. A failed process is restarted from its
a system and, based on this model, an efficient algo- last checkpoint, and all messages originally received
rithm for determining the maximum recoverable sys- by this process since the checkpoint are replayed to it
tem state at any time. This work unifies existing ap- f,'om the log in the same order as they were received

Iuf proaches to fault tolerance based on message logging before the failure. The process reexecutes based on
and checkpointing, and improves on existing methods these messages to its state at the time of the failure.
for optimistic recovery in distributed systems. Messages sent by the process during recovery are ig-

nored since they are duplicates of those sent before

1 Introduction the failure.
On the other hand, optimistic protocols perform

Message logging and checkpointing can be used to the message logging asynchronously [9]. The receiver

provide an effective fault-tolerance mechanism in a continues to execute normally, and received messages
distributed system in which all process communica- are logged later, for example by grouping several

tion is through messages. Each message received by messages and writing them to stable storage in a sin-
gle operation. The receiver of a message depends on

This work was supported in part by the National Science Foun- the state of the sender, though. If the sender fails
dation under grant DCR-8511436 and by the Office of Naval and cannot be recovered (for example, because some
Research under grant ONR N00014-88-K-0140. message has not been logged), the receiver becomes

an orphan process, and its state must be rolled back
during recovery to a point before this dependency

DISTRIBU7TON srTr h rNT A "was created. If rolling back this process causes other
processes to become orphans, they too must be rolled

Approved for public releasel back during recovery. The domino effect [7, 8] is an
Di_,___u__,__ = __l__i_______ ,_,_ uncontrolled propagation of such rollbacks and must

be avoided to guarantee progress in spite of failures.
Recovery based on optimistic message logging must

find the "most recent" combination of process states All dependencies of any process i can, therefore,
that can be recreated, such that none of the process be represented by a dependency vector
states is an orphan.

Optimistic message logging protocols appear to di= (6.) = (61, 62, 63,..., 6n)
be desirable in systems in which failures are rare
and failure-free performance is of primary concern, where n is the total number of processes in the sys-
Since optimistic protocols avoid synchronization de- tern. Component j of process i's dependency vector,
lays during message logging, performance in the ab- 6j, gives the maximum index of any state interval
sence of failures is improved. Although the required of process j on which process i currently depends.
recovery procedure is then more complicated, this Component i of process i's own dependency vector
procedure is only required when a failure occurs. is always set to the index of process i's current state

Section 2 of this paper presents a general model interval. If process i has no dependency on any state
for reasoning about these recovery methods in dis- interval of some process j, then 6, is set to 1, which
tributed systems. With this model, we show that is less than all possible state interval indices.
there is always a unique maximum recoverable system Processes cooperate to maintain their current de-
state, which never decreases, and that if all messages pendency vectors by tagging all messages sent with
received are eventually logged, the domino effect can- their current state interval index and by remembering
not occur. Based on this model, Section 3 describes in each process the maximum index in any message
and proves the correctness of our algorithm for deter- received from each other process. During any single
mining the maximum recoverable system state at any execution of the system, the dependency vector for
time. The algorithm requires no additional messages any process is uniquely determined by the state in-
in the system, and supports recovery from any num- terval index of the process. No component of the de-
ber of concurrent failures, including a total failure. pendency vector of any process can decrease through
Our model and algorithm make no assumption of normal execution of the process.
the message logging protocol used; they support both
pessimistic and optimistic logging protocols, although
pessimistic protocols do not require their full general- 2.2 System States
ity. Section 4 then relates this work to existing fault- The state of the system is the composition of the
tolerance methods published in the literature and dis- states of all component processes of the system and
cusses the effect of different message logging proto- may be represented by an n x n dependency matrix.
cols on our model and algorithm. Finally, Section 5 Taking the dependency vector, di, of each process i
summarizes the contributions of this work and draws in the system, the dependency matrix
some conclusions.

611 612 613 ... 61n

621 622 623 ... 62,
2 The Model D=[6..]= 631 632 633 ... 63n

2.1 Process States : I
Each time a process receives an input message, it be- - I bn2 bn3 ...

6 n NP

gins a new state interval, a deterministic sequence of can be formed, where row i, 6ij, 1 < j < n, is the1 6
execution based only on the state of the process at dependency vector for process i. Since component i
the time that the message is received and on the con- of process i's dependency vector is always the index of
tents of the message itself. Within each process, each process i's current state interval, the diagonal of the
state interval is identified by a unique sequential state dependency matrix, 6i , 1 < i < n, shows the current
interval index, which is simply a count of the number state interval index of each process in the system.
of input messages that the process has received. Let S be the set of all system states that have oc-

All dependencies of a process i on some process curred during any single execution of some system. 8
j can be encoded simply as the maximum index of The set S forms a partial order called the system
any state interval of process j on which process i de- history relation, in which one system state precedes
pends. This encoding is possible since the execution another if and only if it must have occurred first dur-
of a process within each state interval is deterministic ing the execution. This relation can be expressed in
and since any state interval in a process naturally also terms of the state interval index of each process as
depends on all previous intervals of the same process. shown in the dependency matrix. les

STATEMENT "A" Per Dr. Andre Tilborg i or
ONR/Code 1133
TELECON /29/9u VG

Definition 1 If A = [a..] and B = [8..] index of the corresponding rows in the original ma-
are system states in S, then trices.

Definition 2 If A = [a..] and B = [0..]
A -< B € V i [a _i] . are system states in 8, then the union of A

This partial order differs from that defined by and B is A U B =

Lamport's happened before relation [4) in that it or- [. =r a,. if a, >/3,, 1
ders the system states that result from events rather V i 1 = 3i. otherwise
than the events themselves, and that only state inter-
vals (started by the receipt of a message) constitute Likewise, the intersection of two system states in S
events, can be formed such that each process has received

For example, Figure 1 shows a system of four corn- only those messages that it has in both of the two
municating processes. The horizontal lines represent original system states. This can be formed from
the execution of each process, each arrow represents the dependency matrices describing these states by
a message from one process to another, and the num- choosing for each process the row that has the small-
bers give the index of the state interval started by the est state interval index of the corresponding rcws in
receipt of each message. Consider the two possible the original matrices.
system states A and B, where in state A, message Definition 3 If A = [a..] and B = [1..]
a has been received but message b has not, and in are system states in S, then the intersection
state B, message b has been received but message a of A and B is A n B = [b..],
has not. These states can be expressed by the ocoen-
dency matrices Vi .[= a,. ifa,, </o , 1

[i c e s]i [. / 3 . o t h e r w is e "

A 1 0 ±. B = 0 ±l. Continuing the example of Section 2.2 in Figure 1,
1 0 2 0 1 0 2 0 the union and intersection of states A and B can be

L . . 2 @.formed by choosing the proper rows from these two
matrices to get

States A and B are incomparable under the system

history relation, which can be seen by comparing the r2O0 111011
circled values on the diagonals of these two depen- 1U0 B1 1 0
dency matrices. AUB= 10 2 0. 0 2 0

1.1 2 1 1.L.1 0

2.3 The System History Lattice
The following theorem introduces the system his-

A system state describes the set of messages that have tory lattice formed by the set of system states that
been received by each process. Two system states in have occurred during any single execution of some
S can be combined to form their union such that system, ordered by the system history relation.
each process has received all of the messages that it Theorem 1 The set S, ordered by the sys-
has in either of the two original system states. This tern history relation, forms a lattice. For any
can be expressed in terms of the dependency matrices A, B E S, the least upper bound of A and
describing these system states by choosing for each B is A U B, and the greatest lower bound of
process the row that has the largest state interval A and B is A n B.

Proof Straightforward from the construction of sys-

0 1 2 tern state union and intersection in Definitions 2
Process 1 4 and 3. 0

ala,,

Process 2 2.4 Consistent System States
' time

Process 3 0 1 2 % A system state is consistent if and only if all messages

b"s 3received by all processes have either already been

Process 4 0 1 3P sent in the state of the sending process or can de-
terministically be sent by that process in the future.
Since process execution within a state interval is de-

Figure 1 The system history partial order terministic, any message sent before the end of the

current state interval can deterministically be sent, matrix

but messages sent after this cannot be. Only a con-
sistent system state would be possible to be reached D = [b. 0 0
through normal execution of the system from its ini- 1 2 1
tial state, if an instantaneous snapshot of the entire This system state is not consistent since process 1 has
system could be observed [2]. received a message (to begin state interval 1) fromAny messages shown by the system state to be process 2 that has not been sent yet by process 2
sent but not yet received do not cause the system and cannot be deterministically sent in the future.
state to be inconsistent. These messages can be han- This inconsistency is shown in the dependency matrix
died by the normal mechanism for reliable message since 61 2 is greater than 62 2.
delivery, if any, used by the underlying system. In
particular, suppose such a message rn was received Lemma 1 The set C forms a sublattice of
by some process i after the state of process i was ob- Lhe system history lattice.
served to form the system state, and suppose process Proof It suffices to show that for any A, B E C
i then sent some message n (such as an acknowledge- A U B E C and A n B r C Let A = a and
ment of message m), which could show this receipt. B = [f3**.
If message n has been received in this system state, (A U B E C): Let C = [..] = A U B. In each
the state will be inconsistent because message n (not column j of C, either - j< ajj or 7i < 6j j for all i,
message m) is shown as having been received but not since A E C and B E C. Since yj j = max(aj j, Oj j),
yet sent. If message n has not been received yet, no -i <7jj for all i as well. Therefore, A U B E C.
effect of either message can be seen in the system (A n B E C): Let D = [6..] = A n B. By
state, and it is thus still consistent. Definition 3 and since no element in the dependency

If a system state is consistent, then no process vector for any process ever decreases as the process
depends on a state interval of the sender greater than executes 6,, = min(aj, #ij), for all i and j. This
the sender's current state interval in the dependency implies that 6ij < aij and 6, < 8ij. Since A and
matrix. For each column j of the dependency matrix, B are consistent, a < ai j and jii < 3 #j. Combin-
no element in that column may be larger than the ing this with the previous result yields bij < aji and
element on the diagonal of the matrix. ij < Oi. This implies that 6i, < min(ajj,jjj), and

Definition 4 If D = [6..] is some system thus b j f 6j , for all i and j. Therefore, A n B E C.
state in S, D is consistent if and only if 0

Vi, j [ij _< 81] • 2.5 Message Logging and

Let the set C C S be the set of consistent system Checkpointing
states that have occurred during any single execution A message is called logged if and only if its data and
of some system. Thus, the index of the state interval that it started in its

receiver process are both recorded on stable storage.
C = { D E S I D is consistent }. The predicate logged(i, a) is true if and only if the

message that started state interval o in process i is
For example, consider the system of thr:.- logged.

processes whose execution is shown in Figure 2. The The predicate checkpoint(i, o-) is true if and only
state of each process here is observed where the curve if there exists a checkpoint on stable storage that
crosses the execution line for that process, and the re- records the state of process i in state interval
suiting system state is represented by the dependency o,. When a process is created, it is immediately

checkpointed before it begins execution, and thus,
0 checkpoint(i, 0) is true for all processes i.

Procs 1 For every state interval o, of some process, there
% -must be some checkpoint on stable storage for that

Process 2 0 1 2 3 4 process with a state interval index no larger than o,

,' " time since there is at least always a checkpoint on stable
Pr s storage for state interval 0.

s 3 0Definition 5 The effective checkpoint for
a state interval o of some process i is the

Figure 2 An inconsistent system state checkpoint on stable storage for process i

with the largest state interval index c such Proof For any A, B E TZ, AUB E C and AnB E C,
that c < o. by Lemma 1. Since the state of each process in A and

A state interval of a process is called stable if and B is stable, all process states in A U B and A n B are
oniy if all messages received by the process to start stable as well. Thus, A U B E R and A n B E "R, and
state intervals after its effective checkpoint are logged. 1Z forms a sublattice. 0
The predicate stable(i, a) is true if and only if state
interval a of process i is stable. 2.7 The Current Recovery State

Definition 6 If a is the state interval in-
dex for some process i, and if c is the state In recovering after a failure, we wish to restore the
interval index of the effective checkpoint for state of the system to the "most recent" recoverable
state interval a of process i, then state in- state that is possible from the information available,
terval o, of process i is stable if and only if in order to minimize the amount of reexecution nec-

essary to complete the recovery. The system history
V a, C < a < ' [logged(i, a)] . lattice corresponds to this notion of time, and the fol-

lowing theorem establishes the existence of a single
Any stable state interval a for a process can be maximum recoverable state under this ordering.

recreated by restoring the process from the effective Theorem 2 There is always a unique
checkpoint (with state interval index c) and replay- maximum recoverable system state in S.
ing to it in order any logged messages to begin state
intervals c+1 through 7. Proof "Z CS, and by Lemma2, AUB ER for any

The checkpoint of a process includes the com- A,B E X. Since A -< AUB and B -< AUB, the

plete current dependency vector for the process. Each unique maximum in S is simply
logged message, though, only gives the single depen- U D
dency created in the receiver by this message. The DE R
complete dependency vector for any stable state in-
terval of some process is always known, though, since which must be unique since 1Z forms a sublattice of
all messages that started state intervals since the ef- the system history lattice. 0
fective checkpoint must be logged. The maximum recoverable system state at any

time is called its current recovery siate. The following
lemma shows that the current recovery state of the

2.6 Recoverable System States system never decreases.
A system state is called recoverable if and only if all Lemma 3 If the current recovery state
component process states are stable and the resulting of the system is R = [p..], then, for each
system state is consistent. To recover the state of the process i, the system can always be recov-
system, it must be possible to recover the states of Lhe ered without needing to roll back any state
component processes, and for this system state to be interval o, < pi _ .
meaningful, it must be possible to have reached this Proof R will always remain consistent, and for each
state through normal execution of the system from process i, state interval p. i will always remain stable.
its initial state. Since 1Z forms a sublattice, any new current recovery

Definition 7 If D = [6, .] is some system state established after R must be greater than R in
state in S, D is recoverable if and only if the lattice. By Definition 1, this implies that the state

interval index for each process in any new current
DEC A Vi [stable(i,eS,,)] . recovery state must be greater than or equal to pi .

Therefore, for each process i, no state interval a < pi i
Let the set 1Z C S be the set of recoverable system will ever need to be rolled back. C

states that have occurred during any single execution Corollary 1 If all messages received by
of some system. Thus, executing processes are eventually logged,

there is no possibility of the domino effect
= { D E S I D is recoverable) . in the system.

Since only consistent system states can be recover- Proof If all messages are eventually logged, all state
able, 1Z CC C S. intervals of all processes eventually become stable by

Definition 6, and thus new recoverable states must
Lemma 2 The set 1Z forms a sublattice of become possible through Definition 7. By Lemma 3,
the system history lattice, these states will never need to be rolled back. C

2.8 Committing Output 3 Recovery State Algorithm
If some state interval of a process must be rolled 3.1 Introduction
back to recover a consistent system state, any out-
put messages seut wiiile that state interval is being As the system executes, new logged messages and
reexecuted after recovery may not be the same as checkpoints arrive on stable storage. Occasionally,
those originally sent. Any processes that received some combination of this information may define a
such messages will be orphans and must also be rolled new current recovery state by creating a new recov-
back to a point before these messages were received. erable system state greater than the existing current

However, messages sent to the outside world, such recovery state. Theorem 2 of Section 2 established
as those to the user's display terminal, cannot be that there is always a unique maximum recoverable
treated in the same way. Since the outside worid state at any time. Conceptually, this state may be
generally cannot be rolled back, any messages sent to found by an exhaustive search of all combinations of
the outside world must be delayed until it is known stable process state intervals until the maximum com-
that the state interval from which they were sent will bination is found. However, such a search would be
never need to be rolled back, at which time they may too expensive in practice, and an effective means of
be committed by releasing them. This theorem estab- limiting this search space is important.
lishes when it is safe to commit an output message The recovery state algorithm monitors check-
sent to the outside world. points and logged messages as they arrive on stable

storage and decides if each allows an advance in the
Corollary 2 If the current recovery state current recovery state of the system. The algorithm
of the systen, is R = [..], then any message is invoked each time a process state interval becomes
sent by a process from a state m< pe may stable; it is incremental in that it only examines in-
be committed, formation that has changed since its last execution,

Proof Follows directly from Lemma 3. 0 rathe- than recomputing the entire current recovery
state on each execution. Since it only uses informa-
tion on stable storage, it can handle any number of

2.9 Garbage Collection concurrent process failures.

While the system is operating, checkpoints and 3.2 The Basic Algorithm
logged messages accumulate on stable storage in case
they are needed for some future recovery. This data Each time some new state interval or of some process k
may be removed from stable storage whenever doing becomes stable, the algorithm attempts to form a new
so will not interfere with the ability of the system to current recovery state in which the state of proces.; k
recover as needed. The following two theorems estab- is advanced to state interval a. It does so by includ-
lish when this can safely be done. ing any state intervals from other processes that are

necessary to make this new system state consistent.Corollary 3 Let R = [. .] be the cur- The check for consistency is performed by a direct
rent recovery state. For each process i, if application of the definition of system state consis-

ci is the state interval index of the effective

checkpoint for its state interval pi i, then any tency from Section 2. The algorithm succeeds if all

checkpoint for process i with state interval such state intervals included are stable, making this
index or < c may be released from stable new consistent system state composed entirely of sta-storage ble process state intervals. Otherwise, no new current

recovery state is possible.

Proof Follows directly from Lemma 3. 0 An outline of the basic recovery state algorithm
is shown below. Some details are omitted from thisCrentrol ry 4tLe or ec [p.1 es e c- outline for clarity; these will be discussed later after

renisteover state. Fotrval ineh pocthes f the basic algorithm is described. Let R = [p..] be
tise hekpointors state interval x of then the current recovery state of the system. When state
tivmesage heck nt isa state interval ien interval a of process k becomes stable, the following
any message that begins a state interval in steps are taken by the algorithm:
process i with index o, < ci may be releasedstpartkebyhelgihmfrom stable storage. I. If a _< Pk k, then exit the algorithm, since the

current recovery state is already in advance of

Proof Follows directly from Lemma 3. 0 state interval a of process k.

2. Make a new dependency matrix D = (6..] from Second, any row replacements required by the re-
R, with row k replaced by the dependency vector placement of some row j will still be required after
for state interval or of process k. the replacement of row j', j' # j, unless row j also

3. Loop on step 3 while D is not consistent. That required the replacement of row j', and the state in-
is, loop while there exists some i and j for which terval index of the new row j' is greater than that re-
6,j > 6jj, which shows that some process i de- quired by row j, in which case this new row j' would
pends on a state interval of process j greater than still be required if row j's requirement had been met
process j's current state interval in D. first.
Find a stable state interval a > 6ij of process j. Thus, the dependency vecto-r left in each row of D
If state interval 6,j is stable, let a be 6,i; other- when the algorithm terminates will always have the
wise, choose some later state interval of process maximum state interval index of any vector placed in
j for a, if one exists: that row during the l,-p of step 3, regardless of the

(a) If no such state interval exists for a that is order that the row replacements are made. 0
stable, exit the algorithm, but remember to Lemma 6 When state interval a of
recheck this later. process k becomes stable, the basic algo-

(b) Otherwise, replace row j of D with the rithm finds some recoverable system state
dependency vector for state interval a of D = [6..] with 6b k = a, if any such system
process j. state exists.

4. The dependency matrix D is now consistent and Proof Any system state found must be recoverable
composed only of stable process state intervals, since only stable process state intervals are included
It is thus recoverable. Replace R with this new by the algorithm, and the resulting system state is
system state D, making it the new current re- checked for consistency. As each row of D is replaced,
covery staLe. the ependencies that must be satisfied grow as little

as possible with the stable process states that are
3.3 Some Details available, as shown in Lemma 4. Since the state in-

terval for any process used in D never decreases as
Lemma 4 The state interval a chosen for the algorithm executes, the state interval for process
process j during each iteration in step 3 k in any recoverable state found will never be less
must be the minimum a > 6i j that is stable. than a. If the algorithm finds that it needs any state

Proof As a process executes, no element of its de- interval of process k greater than a, no recoverable
pendency vector can decrease. Thus, the dependen- state is possible, since the fact that state interval a
cies of any state interval of process j after this min- of process k is now stable has no effect on such a
imum a will be at least as large as those of state system state, and any such recoverable state that ex-
interval a. Clearly, if state interval 6ij is stable, its ists would have already been found by some earlier
dependencies will be exactly only those that are nec- execution of the algorithm 0
essary; any later state interval of process j may have Lemma 7 No stable process state inter-
additional dependencies that state interval 6ij does val that was deferred in step 3a needs to be
not have. Using the minimum set of dependencies rechecked until step 4 advances the current
possible with the stable process states that are avail- recovery state.
able will restrict the solutions the least. 0 Proof Suppose some state interval a of process k

Lemma 5 The comparisons in step 3 to becomes stable and the algorithm determines that no
check if D is a consistent system state may new recoverable state is possible. By Lemma 6, this
be made in any order without affecting the means that no consistent set of stable process state
final resulting dependency matrix, intervals A = [a..] is available with ac k k = o,.

Proof Since the only change made to D during the Now suppose some new state interval a' of process
loop of step 3 is the replacement of row j with the k' becomes stable. If the algorithm determines that
dependency vector for state interval a, the only effect no new recoverable state is possible, there is no con-
that the order of these comparisons has is the order sistent set of stable process state intervals B = [fl..]
in which these row replacements are performed. available with Ok' a' = a'. The only effect that this

First, each replacement of row j can only increase new state interval o' of process k' can have on the ear-
6, j, since row j is only replaced when 6i > 6j, and lier evaluation of state interval a of process k is that
the new dependency vector for that row is always some recoverable state may now be possible with the
chosen such that its state interval a :> 6,j > 6j. state interval index of process k' set to a', but the

algorithm has already determined that no such re- initially only row k of D has been changed from the
coverable state is possible. Thus, there is no need to current recovery state, and since on each iteration,
recheck any earlier deferred stable process states in only one row is replaced at a time, only the single
this case. 0 changed row needs to be compared against the diag-

This lemma shows when it is necessary to recheck onal elements of D for consistency. Then, only the
any deferred stable state intervals. It also gives a diagonal elements of the matrix are needed during the
method to greatly limit the set of those deferred sta- execution of the algorithm. The list of pending row
ble state intervals that need to be rechecked, rather replacements only needs to remember the maximum
than rechecking all such state intervals that are not index of any state interval needed for each process,
yet included in the current recovery state. since the dependency vector that the algorithm leaves

Corollary 5 When the current recovery in each row of D is the one for that process with the

state advances from R = [p..1 to some new maximum state interval index, regardless of the order
state R' = [V..], the stable process states that the replacements are performed.
that were deferred earlier by step 3a and The function FINDRV, shown in Figure 3, is a
should now be rechecked are those with a procedure to to implement steps I through 3 of the
direct dependency on some state interval o' basic algorithm, taking advantage of these observa-
of any process i such that pi < o" < p ,. tions. This procedure finds a new recoverable state

Proof The proof follows directly from the proof of based on state interval a of process k, if such a state

Lemma 7. 0l exists. The list of pending row replacements is main-
tained in NEED, such that NEED[i] is always the

3.4 Correctness maximum index of any state interval in process i that
is currently needed to replace row i of the matrix. If

Theorem 3 The recovery state algorithm no row replacements are currently needed for some
always finds the current recovery state of the process j, then NEED[j] is set to 1. A vector, RV,
system. is used instead of the full dependency matrix, where

Proof First, by Lemma 6, the algorithm only finds RV[i] is diagonal element i of the corresponding de-
recoverable system states. Also, any such system pendency matrix, which is also the state interval in-

states found will be greater than the previous current dex of process i in the recoverable state. As each row
recovery state since at least the new state interval is replaced, only the corresponding single element of

a for process k is always greater than the previous RV is changed.
state interval index for process k in the current re-
covery state. Lemma 6 also shows that if some new
recoverable state can be formed when state interval a
of process k becomes stable, the algorithm finds one. function FINDRV(RV, k, a)
Lemma 7 shows when it is necessary to recheck any if ao < RV[k] then return true;
process state interval that could not be added to a
new current recoverable state when it became stable, r -I;

and Corollary 5 shows which state intervals should be RV[k] ao;

rechecked then. By rechecking all those state inter- for .i- tonRi do
vals at the correct times, the maximum recoverable i i suVh th n NEED[i] -do

stat mus befoun. owhile 3 i such that NEED[i] $ ±_ dostate m ust b e fou n d . Clc m n m m su h t aa .- minimum such that

a > NEED [i] and stable(i, a);
3.5 An Efficient Procedure if no such a then return false;

The algorithm described in Sections 3.2 and 3.3 can RV[i] -- a:

be implemented efficiently by making some observa- NEED [i] - L;

tions about the execution of the algorithm, based on for - I to n do
Lemma 5. if DV?[j] > RV[j] then

When step 3 examines the dependency matrix D NEEDL] -- max(NEED L], OVa~j]);
on each iteration, there may be many pairs of i and
j for which 6ij > 6b j, indicating that several differ-
ent rows of the matrix need to be replaced. These
required row replacements can be entered into a list
of pending replacements as each is discovered. Since Figure 3 Finding a new recoverable state

Using function FINDRV, the full recovery state Our model is more general than is required by
algorithm can now be stated. This algorithm, shown recovery methods based on pessimistic message log-
in Figure 4, initially calls FINDRV on the state in- ging, but the definitions of consistency, stability, and
terval that just became stable. If no new recoverable recoverability still apply, and the recovery state al-
state is found, the algorithm exits since no change in gorithm still computes the correct current recovery
the current recovery state is possible from this new state. In this case, the current recovery state is iden-
stable state. If FINDRV returns success, the result tical to the state of the system at the time the fail-
becomes the new current recovery state, and the al- ure occurred, since orphan processes are not possible.
gorithm checks if any other recoverable states greater Since message logging is synchronous, however, a sim-
than this result can now exist. The sets DEFER pler recovery state algorithm is possible that takes
keep track of those deferred stable process state in- advantage of the order that information arrives on
tervals that should be rechecked when the current re- stable storage. In particular, checkpoints never add
covery state advances over state interval 3 of process new information for the algorithm, since messages are
j. The set WORK keeps a list of those deferred states always logged in ascending order by the index of the
that are to be rechecked by the algorithm because the state interval that they start in their receivers, and
current recovery state has been advanced, all messages received before a checkpoint have already

been logged before the checkpoint can be recorded.
Recovery based on optimistic logging protocols re-

4 Related Work quires the full generality of our model, however. Since
orphan processes are possible when using optimistic

A number of fault-tolerance recovery methods based logging, recovery from a failure is more difficult. Any
on message logging and checkpointing have been pub- orphan processes must be rolled back during recovery
lished in the literature. This includes ones using pes- to achieve a consistent state. Since there is no syn-
simistic logging protocols such as Auros [1], Publish- chronization between message logging, checkpointing,
ing [6], and sender-based message logging [3], as well and computation, information for the recovery state
as optimistic methods [9]. The model and recovery algorithm may arrive on stable storage at any time
state algorithm presented in Sections 2 and 3 can be and in any order. Thus, the algorithm must be able
applied to each of these and used to reason about to make use of all this information in order to advance
their correctness, the current recovery state to its maximum possible

value at all times.

Our model and algorithm differ in several ways
4VORK ,- ((k, a) I from those uscd for optimistic recovery by Strom
while WORK 0 do and Yemini [9]. First, Strom and Yemini require

remove some state (x, 0) from WORK; reliable delivery of messages between processes. As
if 0 > CRS[x] then a result, their definition of consistency differs from

for j -- 1 to n do ours by requiring all messages sent to have been re-
NEWCRSJ] -- CRSj]; ceived. Our model does not require reliable deliv-

if FINDRV(NEWCRS, z, 6) = true ery, but it can bc inacorporatr'd -asily by inserting
then a return acknowledgement message immediately fol-

for j - 1 to n do lowing each message receipt, with our definition of
for# ,-- CRS[j] + 1 to NEWCRS[J] do consistency remaining unchanged. Second, although

WORK ,- WORK U DEFER; their system checkpoints processes in order to shorten

DEFER' ,- 0; recovery times and release old logged messages from

CRS] ,- NEWCRS[j]; stable storage, they do not take advantage of these
else checkpoints in computing the current maximum re-

for j -- I to n do coverable state in their system. Our algorithm usesfo - Di V to i; both checkpoints and logged messages to compute the

if f > CRS(J] then maximum recoverable state and thus may find recov-
DEFERq 1- DEFER3 erable states that their algorithm does not. Finally,

U (our algorithm requires only the current state inter-
val index of the sending process to be carried in each
message, and requires only a vector of direct depen-
dencies to be maintained by each process. In contrast,

Figure 4 The recovery state algorithm their method requires each proce 7 to maintain a vec-

tor of its transitive dependencies, and requires each [2] K. Mani Chandy and Leslie Lamport. Dis-
message to be tagged with this vector, which has size tributed snapshots: Determining global states of
linear in the number of processes. This added corn- distributed systems. ACM Transactions on Com-
plexity does allow control of recovery in their system pUter Systems, 3(1):63-75, February 1985.
to be more decentralized than in ours. [3] David B. Johnson and Willy Zwaenepoel.

Sender-based message logging. In The Seven-
teenth Annual International Symposium on Fault-

5 Conclusion Tolerant Computing: Digest of Papers, pages 14-
19. IEEE Computer Society, June 1987.

From a performance standpoint, optimistic message [4] Leslie Lamport. Time, clocks, and the ordering of
logging protocols appear to be desirable. They seem events in a distributed system. Communications
to constitute the right performance tradeoff in operat- of the ACM, 21(7):558-565, July 1978.
ing environments where failures are rare and failure- [5] Butler W. Lampson and Howard E. Sturgis.
free performance is of primary concern. The recov- Crash recovery in a distributed data storage sys-
ery state algorithm of Section 3 represents an im- tem. Technical report, Xerox Palo Alto Research
provement on earlier work with recovery based on Center, Palo Alto, California, April 1979.
optimistic message logging by Strom and Yemini [9]. [6] Michael L. Powell and David L. Presotto. Pub-
Although their algorithm eventually achieves a recov- lishing: A reliable broadcast communication
erable state, this state may not be optimal. Further- mechanism. In Proceedings of the Ninth ACM
more, their methods require reliable communication Symposium on Operating Systems Principles,
and seem more complex than the method presented pages 100-109. ACM, October 1983.
here. [7] Brian Randell. System structure for software

This work unifies existing approaches to fault tol- fault tolerance. IEEE Transactions on Software
erance based on message logging and checkpointing Engineering, SE-1(2):220-232, June 1975.
published in the literature, including those using pes- [8] David L. Russell. State restoration in systems
simistic message logging methods [1, 6, 3] and those of communicating processes. IEEE Transactions
using optimistic methods [9]. By using this model on Software Engineering, SE-6(2):183-194, March
to reason about these types of fault-tolerance recov- 1980.
ery methods, properties that are independent of the [91 Robert E. Strom and Shaula Yemini. Opti-
message logging protocol used can be deduced and mistic recovery in distributed systems. ACM
proven. We have shown that there is always a unique Transactions on Computer Systems, 3(3):204-
maximum recoverable system state, which never de- 226, August 1985.
creases, and that in a system where all messages re-
cCved are eventually logged, the domino effect cannot
occur. The use of this general model allows more
attention to be paid instead to designing efficient
message logging protocols.

Acknowledgements

We would like to thank Rick Bubenik, John Carter,
Matthias Felleisen, Gerald Fowler, and Elaine Hill
for many helpful discussions on this material and for
their comments on earlier drafts of this paper.

References

[1] Anita Borg, Jim Baumbach, and Sam Glazer. A
message system supporting fault tolerance. In
Proceedings of the Ninth ACM Symposium on Op-
erating Systems Pinciples, pages 90-99. ACM,
October 1983.

